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Noncollisional kinetic model for non-neutral plasmas in a Penning trap:
General properties and stationary solutions

G. G. M. Coppa* and Paolo Ricci
Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Energetica, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy
~Received 6 May 2002; published 15 October 2002!

This work deals with a noncollisional kinetic model for non-neutral plasmas in a Penning trap. Using the
spatial coordinatesr, u, z and the axial velocityvz as phase-space variables, a kinetic model is developed
starting from the kinetic equation for the distribution functionf (r ,u,z,vz ,t). In order to reduce the complexity
of the model, the kinetic equations are integrated along the axial direction by assuming an ergodic distribution
in the phase space (z,vz) for particles of the same axial energye and the same planar position. In this way, a
kinetic equation for thez-integrated electron distributionF(r ,u,e,t) is obtained taking into account implicitly
the three-dimensionality of the problem. The general properties of the model are discussed, in particular the
conservation laws. The model is also related to the fluid model that was introduced by Finnet al. @Phys.
Plasmas6, 3744~1999!; Phys. Rev. Lett.84, 2401~2000!# and developed by Coppaet al. @Phys. Plasmas8,
1133 ~2001!#. Finally, numerical investigations are presented regarding the stationary solutions of the model.
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I. INTRODUCTION

Non-neutral plasmas are commonly confined by usin
Penning-Malmberg trap. The device@1–3# consists of a con-
ducting cylinder of radiusRw , divided axially into three sec
tions. The central section, which extends fromz52Lc/2 to
z5Lc/2, is grounded, while the end electrodes~each having
lengthLs) are at a negative potential2V for electron plas-
mas. The plasma is mainly confined in the central sect
the axial confinement being provided by the electrosta
fields and the radial confinement by a uniform axial magne
field B5B0ez .

Usually, the dynamics of these plasmas is described
employing a two-dimensional drift-Poisson model, whe
charged particles are regarded as straight lines of unif
density, due to the very high value of the axial bounci
frequency with respect to all the other frequencies of inte
@4,5#. According to the standard model, the particles exh
an E3B drift motion and the electric field is computed se
consistently from the charge density by using the Pois
equation. Consequently, the plasma evolves as a t
dimensional inviscid fluid; in fact, the drift-Poisson model
isomorphic to the two-dimensional Euler equations for a u
form density fluid@6,7#: in particular, a perfect analogy exis
between the Kelvin-Helmholtz instability and theE3B dio-
cotron instability for a plasma@4#. Using a linear theory,
possible instabilities are predicted for the azimuthal mo
mu.1, while themu51 mode is shown to be stable for an
density profile@4,5#. Also, it has been shown that the co
tinuous eigenvalue spectrum of the modemu51 produces
only an algebraic growth of an initial perturbation@8#. Nev-
ertheless, experiments show that the mode growth is actu
exponential@3,9#. The contradiction between experiment
results and linear two-dimensional theory is a challeng
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problem in the theory of non-neutral plasmas.
Recent studies on the evolution of non-neutral plasma

a Penning-Malmberg trap have pointed out the important r
of kinetic effects and of the finite length of the device,
particular for themu51 diocotron instability@10–13#. In
fact, when a particle approaches the end of the plasm
experiences a confining end potential which depends on b
the radiusr and the axial coordinatez. The radial componen
of the confining electric field causes anE3B drift in the
azimuthal direction and the rotation frequency is affect
depending on the axial energy of the particles. In fact,
axial energy affects the penetration length in the confin
potential and, as a consequence, the radial electric field
particle experiences@14–17#.

The aim of the present work is to develop a self-consist
kinetic theory for non-neutral plasmas in a Pennin
Malmberg trap in order to take into account self-consisten
all these effects. A preliminary report of this kinetic theo
was published in Ref.@18#.

The kinetic model assumes@9,19# that the frequencies ar
ordered asvc@vb@vE , vc being the cyclotron frequency
vb the bouncing frequency, andvE the E3B drift rotation,
which is comparable to the frequency of the diocotr
modes. Moreover, the scale lengths are assumed to be
that Rw@lD@r c , whereRw represents the typical macro
scopic dimension of the plasma,lD is the Debye length, and
r c is the cyclotron radius. With these assumptions, the pla
motion of the electrons is described by the dynamics of th
guiding centers, given by theE3B drift velocity, and a com-
plete kinetic description of the plasma is provided by t
distribution functionf (r ,u,z,vz ,t). The description is com-
pleted by the self-consistent Poisson equation for the elec
static potentialf(r ,u,z,t).

To obtain a model that can be dealt with, both analytica
and numerically, the dimensionality of the problem is r
duced, by integrating along the axial direction. Consider
that the electrostatic potential experienced by a string
©2002 The American Physical Society09-1
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G. G. M. COPPA AND P. RICCI PHYSICAL REVIEW E66, 046409 ~2002!
electrons varies slowly in time, an ergodic distribution in t
phase space@20,21# can be assumed for particles of the sa
‘‘axial energy,’’ e, defined as the sum of axial kinetic an
potential energies, and the same planar position (r ,u), in
order to obtain a kinetic equation for thez-integrated electron
distributionF(r ,u,e,t). Such a kinetic equation is the ma
subject of the present work.

The paper is organized as follows. The kinetic equat
for F(r ,u,e,t) is deduced in Sec. II. Section III analyze
conservation laws for the model, while Sec. IV deals with
fluid equation of the plasma: the fluid equations presente
Ref. @11# can be deduced from the kinetic model assumin
Maxwellian distribution for the axial energy of the particle
e. Section V deals with the properties of the distributi
functionF(r ,u,e,t). Finally, in Sec. VI numerical results o
the equilibrium configurations are presented.

II. BASIC EQUATIONS

As vc@vb@vE andRw@lD@r c @9,19#, the guiding cen-
ter drift approximation can be used to describe the dynam
of the plasma particles. According to this assumption,
planar velocity of the particles is fixed by theE3B drift.
Thus, the set of coordinates (r ,u,z,vz) provides a full de-
scription of the state of a particle@17#, and a complete kinetic
representation of the plasma is given by the distribut
function f (r ,u,z,vz ,t), whose dynamics is governed by th
following kinetic equation:

] f

]t
1¹'•S ez3¹'f

B0
f D1

]

]z
~vzf !

1
]

]vz
S e

m

]f

]z
f D50. ~1!

The kinetic equation~1! and the Poisson equation

¹2f5
e

«0
E f ~r ,u,z,vz,t !dvz ~2!

constitute the complete kinetic model for a non-neut
plasma in a Penning trap.

This model is very complex to treat either analytically
numerically. Also, the information it provides is too rich, a
experimental measurements do not yieldf (r ,u,z,vz ,t) di-
rectly, but the z-integrated distribution of the particle
F(r ,u,e,t), whereF(r ,u,e,t)De denotes the number of pa
ticles per unit of area (r ,u) at time t, with axial energy be-
tween e and e1De; the axial energy of the particles,e,
being defined as the sum of axial kinetic and potential en
gies:

e5
1

2
mvz

22ef~r ,u,z,t !. ~3!

In general, the relation between the distribution functio
f (r ,u,z,vz ,t) andF(r ,u,e,t) can be expressed as
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f ~r ,u,z,vz ,t !5E F~r ,u,e,t !G~z,vz ,r ,u,e,$f%,t !de,

~4!

whereG expresses the probability of finding a particle wi
energye and with planar position (r ,u) at the axial position
z and the velocityvz . The functionG is a functional of the
trap potentialf and, according to the definition of probabi
ity, G is normalized in such a way that**Gdzdvz51.

Denoting byH the axial Hamiltonian of a particle@20#,

H5
1

2
mvz

22ef~r ,u,z,t !, ~5!

the kinetic equation for the distribution functionF can be
deduced from Eq.~1!, assuming@21# that the particles with
H5e are distributed according to the ergodic hypothe
@i.e., uniformly in the phase space (z,vz)] so thatG can be
expressed as

G~z,vz ,r ,u,e,$f%,t !5
d~H2e!

E E d~H2e!dzdvz

5
d~H2e!

J~r ,u,e,$f%,t !
, ~6!

where

J~r ,u,e,$f%,t !5E E d~H2e!dzdvz

5EA 2

m@e1ef~r ,u,z,t !#
dz. ~7!

In order to deduce the kinetic equation forF(r ,u,e,t), an
arbitrary function of the Hamiltonian is introduced,c(H),
and the macroscopic quantityC(r ,u,t) is defined as

C~r ,u,t !5E E c~H ! f ~r ,u,z,vz ,t !dzdvz ~8!

or, using Eqs.~4! and ~6!, as

C~r ,u,t !5E E E c~H !F~r ,u,e,t !

3
d~H2e!

J~r ,u,e,$f%,t !
dedzdvz

5E c~e!F~r ,u,e,t !de. ~9!

The kinetic equation forF can be deduced by comparin
the result of two possible different ways of evaluatin
]C/]t. Using Eq.~9!, one can write

]C~r ,u,t !

]t
5E c~e!

]F~r ,u,e,t !

]t
de . ~10!
9-2
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Conversely, using definition~8!, the time derivative of
C(r ,u,t) can be evaluated as

]C~r ,u,t !

]t
5E E Fc~H !

] f

]t
1c8~H !

]H

]t
f Gdzdvz ,

~11!

where c8(H) indicatesdc(H)/dH. If ] f /]t is expressed
using Eq.~1!, it follows that

E E c~H !
] f

]t
dzdvz52E E c~H !F“'•S ez3“'f

B0
f D

1
]~vzf !

]z
1

]

]vz
S e

m

]f

]z
f D Gdzdvz .

~12!

The sum of the last two terms in Eq.~12! vanishes, as an
integration by parts shows. Then, being

f“•v5“•~ f v!2v•“ f ,

Eq. ~12! can be written as

E E c~H !
] f

]t
dzdvz5E E “'•S c~H !

ez3“'f

B0
f Ddzdvz

2E E “'c~H !•
ez3“'f

B0
f dzdvz .

~13!

The second integral in Eq.~13! vanishes, as“'c(H)5
2ec8(H)“'f. Using the expressions forf andG given by
Eqs.~4! and ~6!, respectively, Eq.~12! becomes

E E c~H !
] f

]t
52“'•E E E c~H !

ez3“'f

B0
F~r ,u,e,t !

3
d~H2e!

J~r ,u,e,$f%,t !
dedzdvz

52E c~e!“'•~vDF !de, ~14!

where the velocityvD has been defined as

vD~r ,u,e,t !5E E ez3“'f

B0

d~H2e!

J~r ,u,e,$f%,t !
dzdvz .

~15!

The second term in Eq.~11! can be evaluated as

E E c8~H !
]H

]t
f dzdvz52E E E c8~H !e

]f

]t
F~r ,u,e,t !

3
d~H2e!

J~r ,u,e,$f%,t !
dedzdvz

5E c8~e!F~r ,u,e,t !vede

52E c~e!
]

]e
~Fve!de, ~16!
04640
with

ve~r ,u,e,t !52E E e
]f

]t

d~H2e!

J~r ,u,e,$f%,t !
dzdvz .

~17!

Reordering the results of Eqs.~11!, ~14!, and ~16! and
comparing Eq.~10! with Eq. ~11!, it follows that

E c~e!
]F

]t
52E c~e!“'•~vDF !de

2E c~e!
]

]e
~veF !de. ~18!

As Eq. ~18! is valid for every choice of the functionc(e),
one is led to the conclusion that the time derivative ofF must
satisfy the following equation:

]F

]t
1“'•~vDF !1

]

]e
~veF !50, ~19!

which represents the kinetic equation for the functi
F(r ,u,e,t).

The functiong, defined as

g~z,r ,u,e,$f%,t !5E G~z,vz ,r ,u,e,$f%,t !dvz

5E d~H2e!

J~r ,u,e,$f%,t !
dvz

5
@e1ef~r ,u,z,t !#21/2

E @e1ef~r ,u,z,t !#21/2dz

, ~20!

can be introduced, and it expresses the distribution of
probability of finding a particle in the axial positionz. In
fact, one can write

g~z,r ,u,e,t !Dz5
@ef~r ,u,z,t !1e#21/2Dz

E @ef~r ,u,z,t !1e#21/2dz

5
Dz/vz

E dz/vz

5
Dt

E dt

, ~21!

andDt/*dt represents the ratio between the time the part
spends moving fromz to z1Dz and the bouncing period
which corresponds to the probability of finding a partic
betweenz andz1Dz.

Using the definition~20! for g, the streaming velocities
~15! and ~17! can be expressed as
9-3
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vD~r ,u,e,t !5E ez3“'f

B0
g~z,r ,u,e,$f%,t !dz, ~22!

ve~r ,u,e,t !52E e
]f

]t
g~z,r ,u,e,$f%,t !dz. ~23!

In particular, observing that

de

dt
52e

]f

]t
~24!

and recalling the physical meaning ofg, Eq.~21!, the stream-
ing velocities present in Eq.~19! assume the meaning o
bounce-averaged streaming velocities in the axial plane
along the axial-energy coordinate.

The particle density to be used in the Poisson equa
can be expressed as

n~r ,u,z,t !5E f ~r ,u,z,vz ,t !dvz

5E F~r ,u,e,t !g~z,r ,u,e,$f%,t !de ~25!

and, consequently, the complete kinetic model
F(r ,u,e,t) can be written as

]F

]t
1“'•~vDF !1

]

]e
~veF !50,

¹2f5
e

«0
E F~r ,u,e,t !g~z,r ,u,e,$f%,t !de,

vD5E ez3“'f

B0
g~z,r ,u,e,$f%,t !dz, ~26!

ve52E e
]f

]t
g~z,r ,u,e,$f%,t !dz,

g~z,r ,u,e,$f%,t !5
@e1ef~r ,u,z,t !#21/2

E @e1ef~r ,u,z,t !#21/2dz

.

III. CONSERVATION PROPERTIES

The kinetic model considered in this paper satisfies so
conservation laws. The first property considered here is
conservation of the canonical angular momentum. When
inertia terms are neglected@4#, the canonical angular mo
mentumLz is defined as

Lz52
eB0

2 E
0

RwE
0

2pE
2`

1`

r 2F~r ,u,e,t !rdrdude. ~27!

Using the kinetic equation~19!, the time derivative ofLz can
be written as
04640
nd

n

r

e
e
e

dLz

dt
5

eB0

2 E
0

RwE
0

2pE
2`

1`

r 2@“'•~vDF !#rdrdude ~28!

or, equivalently, as

dLz

dt
5eE

0

RwE
0

2pE
2`

1`E
2`

1`

Fgeu•“fr 2drdudedz, ~29!

having employed the definition~22! for vD and observing
thatvD(Rw ,u)•er50, as the electric field is perpendicular
the surface of the electrodes.

By expressing the integral ofFg overe through the Pois-
son equation, Eq.~29! becomes

dLz

dt
5«0E ¹2f

]f

]u
dr5«0 R

]V

]f

]u
¹f•ndA, ~30!

in which the identity

~¹2f!
]f

]u
5“•S“f

]f

]u D2
1

2

]~“f!2

]u
~31!

and the periodicity off with respect tou have been em-
ployed. As]f/]u vanishes forr 5Rw (f is constant at each
electrode!, the conservation law for the canonical angu
momentum is readily obtained.

The analysis of the energy conservation law is mo
subtle. The total energy of the plasma,Etot , can be expressed
as the sum of the kinetic energyEkin and of the potential
energy of each couple of charged particles,Epot , whereEkin
andEpot are defined as

Ekin~ t !5
1

2E E mvz
2F~r ,u,e,t !

3G~z,vz ,r ,u,e,$f%,t !drdvzde, ~32!

Epot~ t !52
1

2E E efF~r ,u,e,t !

3g~z,r ,u,e,$f%,t !drde. ~33!

The quantityEtot can also be expressed as

Etot5Ee2Epot , ~34!

whereEe is

Ee5Ekin12Epot

5E E eF~r ,u,e,t !g~z,r ,u,e,$f%t !drde ~35!

and the time derivative of the total energy can be evalua
as

dEtot

dt
5

dEe

dt
2

dEpot

dt
. ~36!

By integrating alongz and using Eq.~19!, the time deriva-
tive of Ee becomes
9-4
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dEe

dt
5E E E e

]F

]t
rdrdude

52E E E eF“•~vDF !1
]

]e
~veF !G rdrdude

5E R eFvD•ndlde1E E E veFrdrdude. ~37!

As vD•er vanishes on the electrodes, it follows that

dEe

dt
52E E e

]f

]t
gFdrde5

«0

2 E ]~“f!2

]t
dr

5
dEel

dt
, ~38!

where Eel is the energy associated with the electric fie
which is defined in the following way:

Eel5
«0

2 E ~“f!2dr5
«0

2 E E2dr . ~39!

The time derivative of the potential energyEpot is evalu-
ated as

dEpot

dt
52

«0

2

d

dtE f¹2fdr

52
«0

2

d

dt R f“f•ndS1
dEel

dt
, ~40!

where the Poisson equation and the divergence theorem
been used. Thus, from Eq.~36!, the time derivative of the
total energy becomes

dEtot

dt
5

«0

2

d

dt R f“f•ndS. ~41!

Equation~41! has a simple physical meaning. In fact,
states that the variation of the plasma total energy equals
power received by the system from the environment:
external energy is necessary for the trap to maintain the e
trodes at the fixed potential. As the electric potential is z
for the central electrode, the surface integral appearing in
~41! can be calculated by considering only the region of
side electrodes~at potential2V), and Eq.~41! can be re-
written as

dEtot

dt
5

«0

2

d

dt S V R “f•nDdS. ~42!

According to the Coulomb law for a conductor surfa
@22#, one can write

“f•n5
s

«0
, ~43!

wheres is the surface charge density of the conductor.
troducing this expression in Eq.~42!, it follows that
04640
,
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dEtot

dt
5

1

2

d

dt
~2Vq!, ~44!

which is exactly the power supplied to the end electrodes
order to maintain them at potential2V during the plasma
evolution ~q is the total charge of the electrodes!.

Finally, from Eqs.~40! and ~41!, the variation of the ki-
netic energyEkin associated with the particles can be eva
ated as

dEkin

dt
5«0

d

dt R f“f•ndS2
dEel

dt
. ~45!

IV. CONNECTIONS WITH THE FLUID MODEL

Starting from the kinetic model presented here, the fl
model for non-neutral plasmas that was introduced by F
et al. @12,13# and refined by Coppaet al. @11# can be de-
duced. Moreover, through the present kinetic model,
meaning of the energy conservation law found within t
fluid model in Ref.@11# can be pointed out.

According to Finnet al.’s model, charged particles in
Penning trap are regarded as strings of variable length~and,
consequently, of variable density! in which the Maxwell-
Boltzmann distribution is reached along thez direction
@11,17#. This means that the electron densityn(r ,u,z,t),
which is related to the kinetic distribution functio
F(r ,u,e,t) through Eq.~25!, can be written as

n~r ,u,z,t !5N~r ,u,t !expFef~r ,u,z,t !

kBT G , ~46!

whereT is the electron temperature andN is a function in-
dependent ofz. The fluid equation for thez-integrated den-
sity s(r ,u,t), defined as

s~r ,u,t !5E n~r ,u,z,t !dz, ~47!

can be written as in Ref.@11#:

]s

]t
1“'•~V's!50, ~48!

whereV' is defined in the following way@11#:

V'5
1

B0
ez3

E exp@~ef!/~kBT!#“'fdz

E exp@~ef!/~kBT!#dz

. ~49!

Assuming that the energy dependence of thez-integrated
distribution functionF is factorized as

F~r ,u,e,t !5
F~r ,u,t !

AkBT
expS 2

e

kBTD E dz

Aef1e
, ~50!
9-5
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G. G. M. COPPA AND P. RICCI PHYSICAL REVIEW E66, 046409 ~2002!
the assumption~46! is recovered and the fluid equation~48!
is deduced, from the kinetic model developed here. In fa
within this hypothesis, recalling Eq.~25!, the particle density
can be written as

n~r ,u,z,t !5
F~r ,u,t !

AkBT
E exp@2e/~kBT!#

Aef1e
de

5ApF~r ,u,t !expFef~r ,u,z,t !

kBT G , ~51!

and by simply imposing the relationApF(r ,u,t)
5N(r ,u,t) between the functionsF andN, the assumption
~46! is readily obtained.

The fluid equation~48! can be deduced from the kinet
model by integrating Eq.~19! over the energye. In fact,
requiring F to have the form expressed in Eq.~50! and re-
calling the results of the integral~51! and the relation be-
tweenF andN, the fluid equation~48! is obtained.

It must be pointed out that the assumption~46! implies
that the electrons are distributed as stated by the cano
distribution @21# in the phase space (z,vz), for each planar
position (r ,u) and, in fact, it is possible to write

f ~r ,u,z,vz ,t !5A m

2kBT
F~r ,u,t !expS 2

H

kBTD , ~52!

as follows from Eqs.~4! and ~50!.
In Ref. @11#, the energy conservation of the fluid mod

was investigated and a conservation law was found in
context. The kinetic theory makes it possible to discuss
energy conservation in more detail. As the fluid model
obtained having fixed the energy dependence of the distr
tion function, the energy of the particles cannot vary in tim
self-consistently as prescribed by Eq.~24!. There are two
main consequences of this fact. The first concerns the kin
energy of the plasma. The energyEe can be evaluated di
rectly from Eq.~35! by using the assumption~50!: one ob-
tains

Ee5
1

AkBT
E E e

exp@2e/~kBT!#

Aef1e
F~r ,u,t !dedr

5
1

AkBT
E expS ef

kBTDF~r ,u,t !

3E e
exp@2~e1ef!/~kBT!#

Aef1e
dedr . ~53!

The integration overe can be performed analytically, so th
the energyEe can be written as
04640
t,
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Ee5E S 1

2
kBT2ef DexpS ef

kBTDN~r ,u,t !dr

5
1

2
NkBT2eE f~r ,u,z,t !n~r ,u,z,t !dr

5const12Epot , ~54!

with N denoting the~constant! number of particles in the
trap. Equation~54! leads to

d

dt
~E«22Epot!50 ~55!

and, as a consequence, from Eq.~35!, it follows that

dEkin

dt
50 ~56!

within the fluid model, in contrast to Eq.~45!. Equation~56!
has a simple physical meaning: it indicates that Eq.~46!
describes the plasma as a sequence of thermal equilib
states, fixing the kinetic energy of the plasma particles@see
Eq. ~52!# and, thus, neglecting its variation.

The second consequence concerns the conservation o
total energy of the plasma,Etot . As Eq. ~24! is not satisfied
within the fluid model, there is no exchange between pot
tial and plasma particle energy, to enable preservation of
total amount of energy in the system. In particular, from E
~54! and considering that Eq.~40! still holds, one obtains

dEtot

dt
5

dEel

dt
2

«0

2

d

dt R f“f•ndS ~57!

within the fluid model, unlike Eq.~41!.
In the particular case in which, during the evolution, it

true thatdEkin /dt50 or, equivalently@see Eq.~45!#, if the
condition

dEel

dt
5«0

d

dt R f¹f•ndS ~58!

holds, then the conservation of the total energy of the plas
is found within the fluid model, as well. In fact, if Eq.~58! is
verified, Eq.~57! reduces to Eq.~41! or, in other terms, the
fluid model states a correct energy conservation law.

In Ref. @11# @Eq. ~35!, p. 1136#, the quantityEe f f was
introduced as a guess to express the total energy of
plasma. In particular, the following conservation prope
was found@see Ref. 11, Eq.~41!, p. 1136#:

dEe f f

dt
5

1

2

dEel

dt
. ~59!

Of course, Eq.~59! cannot express a conservation in t
form of Eq. ~41! in a general plasma evolution: this wou
transcend the fluid model. However, if Eq.~58! holds, the
energy conservation law~59! found in Ref.@11# yields
9-6
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dEe f f

dt
5

«0

2

d

dt R f“f•ndS, ~60!

which is a correct energy conservation law for the quan
Ee f f . This means that the energyEe f f is a correct guess fo
the total plasma energy because, in the limiting cases wh
also within the fluid model, the plasma evolution is such t
the total energy of the particles is conserved, Eq.~59! re-
duces to the form of the general conservation law Eq.~41!.

V. GENERAL PROPERTIES OF THE z-INTEGRATED
DISTRIBUTION

There are different ways of expressing the distribut
F(r ,u,e,t) as a function of more common physical quan
ties. First, the functionF(r ,u,e,t) is tightly related to experi-
mental data. Usually, experiments regarding non-neu
plasmas@16# provide thez-integrated distribution of the par
ticles, s(r ,u,t) @defined in Eq.~47!#, and the value of the
kinetic energy of the particles,§, through the distribution
pK(§,r ,u,t). The distribution functionpK is normalized so
that *pK(§,r ,u,t)d§51.

The kinetic energy§ can be expressed as

§5e1efm, ~61!

where fm is the potential of the point where the kinet
energy of the particles is measured and, as a consequ
the distribution functionF(r ,u,e,t) can be written directly
from experimental data as

F~r ,u,e,t !5s~r ,u,t !pK~e1efm ,r ,u,t !. ~62!

Moreover, in analogy with Refs.@11–13#, where the
plasma densitync(r ,u,t) at the center of the trap (z50) is
supposed to be known, in the present kinetic model i
possible to fix the distribution functionf (r ,u,z,vz ,t) at the
center of the trap, in the form

f ~r ,u,z50,vz ,t !5nc~r ,u,t !pv~vz ,r ,u,t !, ~63!

with pv expressing thez-velocity distribution of the particle
in the planar position (r ,u), where *pv(vz ,r ,u,t)dvz51.
The corresponding distribution functionF(r ,u,e,t) can be
expressed as

F~r ,u,e,t !5nc~r ,u,t !pvSA2~e1efc!

m
,r ,u,t D

3EA 2

m~e1ef!
dz, ~64!

where the potentialfc(r ,u,t) denotes the potential of th
trap at z50 and can be evaluated by solving the Poiss
equation

¹2fc5
e

«0
nc~r ,u,t ! ~65!
04640
y

re,
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in an axially infinite cylinder.
Finally, in Refs. @11–13#, the plasma lengthL(r ,u,t)

was introduced, in order to expresss(r ,u,t) as
nc(r ,u,t)L(r ,u,t). In analogy with the fluid model, a
plasma length that depends on the axial energy of the
ticles is introduced to express the distribution functi
F(r ,u,e,t) as

F~r ,u,e,t !5nc~r ,u,t !L~r ,u,e,t ! ~66!

and, using Eq.~64!, L(r ,u,e,t) can be written as

L~r ,u,e,t !5A2E pv~e1efc ,r ,u,t !

Am~e1ef!
dz. ~67!

VI. EQUILIBRIUM STATES

As can be readily verified, any axially symmetric distr
bution function of the formF5F(r ,e), associated with the
potential f5f(r ,z) given by the self-consistent Poisso
equation

¹2f~r ,z!5
e

e0
E F~r ,e!@ef~r ,z!1e#21/2

E @ef~r ,z!1e#21/2dz

de, ~68!

represents an equilibrium distribution.
The stationary states of the plasma have been investig

by solving numerically the Poisson equation~68! for differ-
ent choices of the functionF(r ,e). Equation~68! is a non-
linear elliptic partial differential equation in two dimension
Discretizing the variablesr, z, and e and using suitable
quadrature formulas to evaluate thez ande integrals@23#, the
Poisson equation~68! can be solved numerically by addin
the term]f/]t to its left-hand side and seeking the stea
state of the time-dependent diffusionlike equation obtain
A time-implicit method has been used to solve the diffusio
like equation. Oncef(r ,z) is evaluated, the density of elec
trons in the Penning trap is readily found as

n~r ,z!5E F~r ,e!@ef~r ,z!1e#21/2

E @ef~r ,z!1e#21/2dz

de ~69!

and also the bounce-averaged drift velocityvD5vD,ueu can
be evaluated as a function ofr ande.
9-7
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FIG. 1. Equilibrium plasma density and po
tential for a typical Penning trap. The confinin
potential is V5250 V, the central electrode
length Lc526 cm, the end electrode lengthLs

54 cm, the gap lengthLg50.5 cm, the wall ra-
dius Rw53.5 cm, the plasma temperatureT
51000 K, and the magnetic fieldB051 T. The
velocity distribution of the electrons is Maxwell
ian. The central profile parameters aren055
31012 m23, m55, andr p52 cm.
e
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nd
The equilibrium solutions have been studied having fix
the plasma density at the center of the trapnc(r ) in the form
@5,12,13#

nc~r !5H n0F12S r

r p
D 2G2F11~m12!S r

r p
D 2G if r<r p

0 otherwise,

~70!

where the dimensionless positive parameterm measures the
degree of hollowness of the profile. Different density profi
for different values of the parameterm are plotted in Ref.
@11#. In particular, the density profile used in all the nume
cal integrations of the present paper corresponds tom55.

The equilibrium potential and the equilibrium plasm
density for a standard Penning trap are represented in Fi
04640
d

s

1.

The electron velocity distribution atz50 @see Eq.~63!# is
assumed to be Maxwellian, being

pv~vz ,r !5A m

2pkBT
expS 2

mvz
2

2kBTD . ~71!

As expected, Fig. 1 shows that the electron density decre
sharply approaching the end electrodes, while thez depen-
dence of the plasma distribution in the grounded central e
trode is negligible.

The equilibrium solutions have also been computed in
case of distributions with the form expressed by a trunca
Maxwellian, that was recently employed by Hilsabeck a
O’Neil @10#:
e

FIG. 2. Plasma density differ-
ence Dn/n0 with respect to the
Maxwellian distribution, for a
Maxwellian distribution truncated
at the energyS5kBT/2 ~dotted!,
S5kBT ~dashed!, and S52kBT
~solid!. The trap parameters ar
the same as in Fig. 1.
9-8
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FIG. 3. Bounce-averaged drift frequencyvD

~in krad/s! for electrons at different axial ener
gies: e520.5 eV ~solid!, e523.3 eV ~dotted!,
and e526 eV ~dashed! for two different values
of Lc . The prediction of the two-dimensiona
theory is shown by the thick solid line. The othe
trap parameters are the same as in Fig. 1.
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pv~vz ,r !55
A m

2pkBT
expS 2

mvz
2

2kBTD
3FerfSA S

kBTD G21

if
1

2
mvz

2.S~r !,

0 otherwise,

~72!

and the corresponding equilibrium potentials and equilibri
electron densities, for different values ofS, have been com-
pared with the pure Maxwellian case.

Figure 2 compares the differences in the plasma den
with respect to the Maxwellian case, for different truncat
Maxwellians at different radii. The difference of the plasm
density is more evident at the border of the plasma and
pends onr. It increases as the Maxwellian distribution
truncated more and more at low energy: in particular, Fig
reveals that the lack of energetic electrons in the trunca
Maxwellians implies a shorter penetration length of t
plasma into the confining potential wall.

Figures 3 and 4 discuss the azimuthal component of
bounce-averaged drift frequencyvD . In particular, Fig. 3
shows the bounce-averaged drift frequency at different a
energies, compared to the predictions of the classic, t
dimensional theory for a short and a long Penning trap. F
ure 4 shows the contour plot of the bounce-averaged d
frequency versus the radius and the axial energy of the
ticles. As was argued@16,17#, the drift velocity strongly de-
pends on the particle energy.

VII. CONCLUSIONS

In the present work, a noncollisional kinetic model for
non-neutral plasma in a Penning trap has been develo
describing the evolution of thez-integrated distribution func-
tion F(r ,u,e,t). The general properties of the model ha
been discussed, in particular the conservation propertie
04640
ty,
d

e-

2
d

e
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ift
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ed

It

has been pointed out that the model conserves both the
gular momentum of the plasma and the energy of the syst
From the kinetic equation, the fluid model introduced
Finn et al. @12,13# and developed by Coppaet al. @11# has
been deduced. The distribution functionF(r ,u,e,t) has also
been related to experimentally measured data through
~62!. Numerical results have been shown concerning
equilibrium states of the plasma.

Further investigations regarding non-neutral plasma
namics can be performed using the kinetic model presen
here. In particular, the kinetic equation can be linearized
order to study the temporal evolution of an initial perturb
tion. An eigenvalue equation can be obtained in order
study the spatial and energetic distributions of the mo
and, through its spectrum, their frequencies and growth ra
Of particular interest is the modemu51, whose stability

FIG. 4. Contour plot of the bounce-averaged drift frequencyvD

~in krad/s! for electrons at different axial energies and differe
radii, for the case of a typical Penning trap: the trap parameters
the same as in Fig. 1.
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investigation still represents a challenging problem in
physics of non-neutral plasmas. In comparison to fluid m
els, the linear analysis performed using the present kin
model takes into account that particles with different ax
energies have different rotation frequencies, and a sprea
the axial energies produces a broadening of the unst
mode’s resonance with the plasma rotation@10#.

The evaluation of the averaged streaming velocities
also be suitably used in order to study, through particle
al

C

ta

ys

04640
e
-
ic
l
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n
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cell codes, the importance of the energy dependence for
evolution of the vortices in a Penning trap.
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