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Noncollisional kinetic model for non-neutral plasmas in a Penning trap:
General properties and stationary solutions
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This work deals with a noncollisional kinetic model for non-neutral plasmas in a Penning trap. Using the
spatial coordinates, 6, z and the axial velocity, as phase-space variables, a kinetic model is developed
starting from the kinetic equation for the distribution functidn, #,z,v,,t). In order to reduce the complexity
of the model, the kinetic equations are integrated along the axial direction by assuming an ergodic distribution
in the phase space,p,) for particles of the same axial energyand the same planar position. In this way, a
kinetic equation for the-integrated electron distributiof(r, 6, €,t) is obtained taking into account implicitly
the three-dimensionality of the problem. The general properties of the model are discussed, in particular the
conservation laws. The model is also related to the fluid model that was introduced bytRahrPhys.
Plasmas, 3744(1999; Phys. Rev. Lett84, 2401(2000] and developed by Coppet al. [Phys. Plasmas,
1133(2001)]. Finally, numerical investigations are presented regarding the stationary solutions of the model.
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[. INTRODUCTION problem in the theory of non-neutral plasmas.
Recent studies on the evolution of non-neutral plasmas in
Non-neutral plasmas are commonly confined by using a Penning-Malmberg trap have pointed out the important role
Penning-Malmberg trap. The devigg—3] consists of a con-  of kinetic effects and of the finite length of the device, in
ducting cylinder of radiu®,,, divided axially into three sec- particular for them,=1 diocotron instability[10—-13. In
tions. The central section, which extends fram —L /2 to  fact, when a particle approaches the end of the plasma, it
z=L./2, is grounded, while the end electrodescch having experiences a confining end potential which depends on both
lengthL,) are at a negative potential V for electron plas- the radiug and the axial coordinate The radial component
mas. The plasma is mainly confined in the central sectiongf the confining electric field causes & B drift in the
the axial confinement being provided by the electrostatic@zimuthal direction and the rotation frequency is affected,
fields and the radial confinement by a uniform axial magneticdepending on the axial energy of the particles. In fact, the
field B=Bge,. axial energy affects the penetration length in the confining
Usually, the dynamics of these plasmas is described bpotential and, as a consequence, the radial electric field the
employing a two-dimensional drift-Poisson model, whereparticle experiencesl4—17.
charged particles are regarded as straight lines of uniform The aim of the present work is to develop a self-consistent
density, due to the very high value of the axial bouncingkinetic theory for non-neutral plasmas in a Penning-
frequency with respect to all the other frequencies of interesiMalmberg trap in order to take into account self-consistently
[4,5]. According to the standard model, the particles exhibitall these effects. A preliminary report of this kinetic theory
an EX B drift motion and the electric field is computed self- was published in Ref.18].
consistently from the charge density by using the Poisson The kinetic model assum¢8,19 that the frequencies are
equation. Consequently, the plasma evolves as a twardered asv.> w,> wg, w, being the cyclotron frequency,
dimensional inviscid fluid; in fact, the drift-Poisson model is wy, the bouncing frequency, andg the EX B drift rotation,
isomorphic to the two-dimensional Euler equations for a uni-which is comparable to the frequency of the diocotron
form density fluid 6,7]: in particular, a perfect analogy exists modes. Moreover, the scale lengths are assumed to be such
between the Kelvin-Helmholtz instability and tBe< B dio-  that R,>\p>r., whereR,, represents the typical macro-
cotron instability for a plasm&4]. Using a linear theory, scopic dimension of the plasmay, is the Debye length, and
possible instabilities are predicted for the azimuthal modes. is the cyclotron radius. With these assumptions, the planar
my,>1, while them,=1 mode is shown to be stable for any motion of the electrons is described by the dynamics of their
density profile[4,5]. Also, it has been shown that the con- guiding centers, given by tHeX B drift velocity, and a com-
tinuous eigenvalue spectrum of the moalg=1 produces plete kinetic description of the plasma is provided by the
only an algebraic growth of an initial perturbatip8]. Nev-  distribution functionf(r,6,z,v,,t). The description is com-
ertheless, experiments show that the mode growth is actuallyleted by the self-consistent Poisson equation for the electro-
exponential[3,9]. The contradiction between experimental static potentiakh(r, 6,z,t).
results and linear two-dimensional theory is a challenging To obtain a model that can be dealt with, both analytically
and numerically, the dimensionality of the problem is re-
duced, by integrating along the axial direction. Considering
*Email address: ggmcoppa@polito.it that the electrostatic potential experienced by a string of
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electrons varies slowly in time, an ergodic distribution in the

phase spack0,21] can be assumed for particles of the same  f(r,60,z,v;,t)= J F(r,0,e,)G(z,v,,1,0,€,{¢},t)de,

“axial energy,” €, defined as the sum of axial kinetic and (4)

potential energies, and the same planar positio®)( in

order to obtain a kinetic equation for tléntegrated electron whereG expresses the probability of finding a particle with

distributionF(r, 6,€,t). Such a kinetic equation is the main energye and with planar positionr( #) at the axial position

subject of the present work. z and the velocity,. The functionG is a functional of the
The paper is organized as follows. The kinetic equatiortrap potential¢ and, according to the definition of probabil-

for F(r,0,¢,t) is deduced in Sec. Il. Section Il analyzes ity, G is normalized in such a way thdtf Gdzd,=1.

conservation laws for the model, while Sec. IV deals with the  Denoting byH the axial Hamiltonian of a particlg20],

fluid equation of the plasma: the fluid equations presented in

Ref.[11] can be deduced from the kinetic model assuming a 1,

Maxwellian distribution for the axial energy of the particles, H=Smu;—e¢(r.0,z0), ®)

e. Section V deals with the properties of the distribution

functionF(r, 8,¢,t). Finally, in Sec. VI numerical results on the kinetic equation for the distribution functida can be

the equilibrium configurations are presented. deduced from Eq(1), assuming 21] that the particles with
H=¢€ are distributed according to the ergodic hypothesis
Il. BASIC EQUATIONS [i.e., uniformly in the phase space,{,)] so thatG can be
expressed as
As 0> wp> wg andR,>\p>r.[9,19], the guiding cen-
ter drift approximation can be used to describe the dynamics o(H—e)
of the plasma particles. According to this assumption, the G(z,.1.0,6{¢}11)=
planar velocity of the particles is fixed by tHex B drift. f f d(H—e)dzw,
Thus, the set of coordinates,,z,v,) provides a full de-
scription of the state of a particJ@7], and a complete kinetic o(H—e€)
representation of the plasma is given by the distribution :W ©)
function f(r,0,z,v,,t), whose dynamics is governed by the
following kinetic equation: where
of exV, ¢ d _ f j B
ap R f) e 2 o) ro.elotn= [ | aH-edza,
0 (e dd _ f \/ 2
tonl w0 @ mierearoz01 7

In order to deduce the kinetic equation fofr, 0, €,t), an
arbitrary function of the Hamiltonian is introduceg{H),
and the macroscopic quantity(r,,t) is defined as

The kinetic equatioril) and the Poisson equation

V2= ;f f(r,0,z,v,t)dv, 2)
0 \If(r,&,t)szw(H)f(r,G,z,vz,t)dzduZ ®)

constitute the complete kinetic model for a non-neutral

plasma in a Penning trap. or, using Eqs(4) and (6), as
This model is very complex to treat either analytically or
numerically. Also, the information it provides is too rich, as :f f f
experimental measurements do not yiéla, 6,z,v,,t) di- V(r.0. WH)F(r.6,e1)

rectly, but the zintegrated distribution of the particle,

F(r,6,€,t), whereF(r,0,e,t)Ae denotes the number of par- Xﬂdedzdvz
ticles per unit of arear( 6) at timet, with axial energy be- J(r,0.e{s}1)
tween e and e+ Ae€; the axial energy of the particles,
being defined as the sum of axial kinetic and potential ener- :f Y(e)F(r,0,e,t)de. 9)
gies:
1 The kinetic equation foF can be deduced by comparing
_ 2 the result of two possible different ways of evaluating
== - t).
€=Mz e¢(r.6,2,0) ® oW¥/ot. Using Eq.(9), one can write
In general, the relation between the distribution functions Jv(r,0.t) :J o 6)‘9':(“9"5"[) de (10)
f(r,0,z,v,,t) andF(r,0,e,t) can be expressed as at ot '
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Conversely, using definitiort8), the time derivative of

V¥ (r,0,t) can be evaluated as

a\If({;t,e,t) :J' j

where ' (H) indicatesdy(H)/dH.
using Eq.(1), it follows that

[ foontaso— [ oo (255254

Iv,f) 9 (ed
L )+—<——¢f)
gz dv,\m iz

dzdv,,
11

of JH
lﬂ(H)E‘Hﬂ'(H)Wf

dzdv,.

12

The sum of the last two terms in EGL2) vanishes, as an

integration by parts shows. Then, being
fV.v=V.(fv)—v-Vf,

Eqg. (12) can be written as

f.f¢( —pdzd,= f_fvi( el VL¢)dzwz
fjvﬂmm ¢MCb
(13

The second integral in Eq13) vanishes, a¥ | ¢/(H)=

—ey'(H)V  ¢. Using the expressions férand G given by

Egs.(4) and(6), respectively, Eq(12) becomes

[ fon2ew [ [ ot

S(H—e)
“3(r.6.e {0

(r,60,e,t)
dedzdv,

_—J P(€)V, - (vpF)de, (14

where the velocitywp has been defined as

f exV, ¢ o(H—e¢€)
J(r,0,e,{o},t)

dzdv,.
(15

vD(r,ﬁ,e,t):f

The second term in Ed11) can be evaluated as

f f¢ﬂﬂ%?mez J [f¢ Hm——ﬂraeo

H—e)

—J(r,ﬂ,e,{qﬁ},t) dedzdv,

:J’ ' (e)F(r,0,e,t)v de

14
- [ o Fuade, a9

If of/at is expressed

PHYSICAL REVIEW E 66, 046409 (2002

with

o(H—e¢)
ve(r.0,et)= _ff atJr06{¢}Ud 2.
(17)

Reordering the results of Eq¢ll), (14), and (16) and
comparing Eq(10) with Eq. (11), it follows that

| e

fw (V- (VoF)de
—f J F)d 18
Mo (v Frde. (18

As Eq.(18) is valid for every choice of the functiom(e),
one is led to the conclusion that the time derivativé-ohust
satisfy the following equation:

dF
—+V, - (vpF)+

- . F)=0, 19

which represents the kinetic equation for the function
F(r,0,¢e,t).
The functiong, defined as

g(z,r,e,e,{¢>},t)=J’ G(z,v,,r,0,e,{¢},t)dv,

B S(H—e¢)
‘f 3T 0.efdnn

—-1/2
_ [et+ep(r,0,z,t)] @0

f[e+e¢>(r,6,z,t)]‘1/2dz

can be introduced, and it expresses the distribution of the
probability of finding a particle in the axial position In
fact, one can write

[ed(r,0,z,t)+ €] YAz
f [ed(r,0,z,t)+ €] Yz

Azlv, At
= =— (22)

fdyvz fdt

andAt/[dt represents the ratio between the time the particle
spends moving fronz to z+Az and the bouncing period,
which corresponds to the probability of finding a particle
betweenz andz+ Az.

Using the definition(20) for g, the streaming velocities
(15) and(17) can be expressed as

g(zr,0,et)Az=
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Vp(r,0,e t)—fez g(zr 0,e{d})dz, (22 %=?JORWLZWJ+:r2[Vl~(vDF)]rdrd0de (28)

or, equivalently, as

Ry (27 [+% [+=
zef f f f Fge, Vor2drdodedz, (29
0 0 —o0o J —oo

de I having employed the definitiof22) for vp and observing
(24)  thatvp(R,,0)-e=0, as the electric field is perpendicular to
the surface of the electrodes.
By expressing the integral &fg over e through the Pois-
son equation, Eq.29) becomes

1%
vs(r,G,e,t)=—f eﬁ—fg(z,r,e,e,w},t)dz. (23
In particular, observing that

at St

and recalling the physical meaning@fEg.(21), the stream-
ing velocities present in Eq.19) assume the meaning of

bounce-averaged streaming velocities in the axial plane and dL, 5 L)
along the axial-energy coordinate. Fzsof v ¢—df—80 § —g V¢ ndA, - (30)
The particle density to be used in the Poisson equation
can be expressed as in which the identity
J¢ I\ 14(Ve)?
n(r,0,z,t)= | f(r,0,z,v,,t)d 2 —=V.
(r.6.z1) f( 2,0;,t)dv, (Vo) - V(Vcﬁw) CRrT (31

_ and the periodicity of¢ with respect tod have been em-
J F(r.0.eg(zr.6.e{¢})de (29 ployed. Asd /36 vanishes for =R, (¢ is constant at each
electrode, the conservation law for the canonical angular
and, consequently, the complete kinetic model formomentum is readily obtained.
F(r,0,e,t) can be written as The analysis of the energy conservation law is more
subtle. The total energy of the plasnig,,, can be expressed
as the sum of the kinetic enerdy,;, and of the potential
energy of each couple of charged particlgs,;, whereky,
andk,, are defined as

e
2,
Vep= SOJ F(r,0,e,t)g(zr,0,€{o},t)de, B (1) f fmv F(r.6,et)

XG(z,v,,r,0,€,{¢},t)drdv,de, (32

Eport JJeq&F(r 0,€,1)

JF v —0
VL (VoF) o(0,F)=0,

szf%wg(z,r,ﬁ,e,{@,t)dz, (26)
0

V.= f e%g(z,r,e,e,{cﬁ},t)dz,

Xg(z,r,0,e,{p},t)drde. (33
[et+ed(r,0,z,t)] Y2 The quantityk,,, can also be expressed as
g(zr,0,e{d},t)= .
f [e+eqg(r,0,z,t)] Yz Eyor=Ee—Epot, (34)

whereli, is

I1l. CONSERVATION PROPERTIES
Ee: Eiin+ 2Epot

The kinetic model considered in this paper satisfies some
conservation laws. The first property considered here is the :J f €F(r,0,e,1)0(zr, 0,6 {p}t)drde (35
conservation of the canonical angular momentum. When the
inertia terms are neglectdd], the canonical angular mo-

mentumL, is defined as and the time derivative of the total energy can be evaluated

as
e Ry (27 [+ n n n
—iof f f (2F(r,0,e,t)rdrdode. (27) dbor _ dbe  dbpor (36)
0 Jo J-e dt dt dt -
Using the kinetic equatiofil9), the time derivative of., can By integrating along and using Eq(19), the time deriva-
be written as tive of k., becomes
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d]E dife; 1 d
Hje—rdrdade —Z —(-Vaq), (44)

1]

V. (vpF)+ i(v F)}rdrd 0de which is exactly the power supplied to the end electrodes in
° ¢ order to maintain them at potential V during the plasma
evolution(q is the total charge of the electrodes

:f § eFVD-ndlde-i-f f f v Frdrdede. (37) Finally, from Egs.(40) and (41), the variation of the ki-
netic energyly,;, associated with the particles can be evalu-
As vp- & vanishes on the electrodes, it follows that ated as
0(V¢)2 dEyin B _dF
ffe_ng de_? . 5 sodt #V $-ndS (45)
dEe
= T (39 IV. CONNECTIONS WITH THE FLUID MODEL

Starting from the kinetic model presented here, the fluid
where I, is the energy associated with the electric field,model for non-neutral plasmas that was introduced by Finn

which is defined in the following way: et al. [12,13 and refined by Coppat al. [11] can be de-
duced. Moreover, through the present kinetic model, the
_%o 2qr — E0 | 2 meaning of the energy conservation law found within the
ey 2 f (Vg)mdr 2 J E-dr. (39 fluid model in Ref.[11] can be pointed out.

) o _ ) According to Finnet al’s model, charged particles in a
The time derivative of the potential enerdjy, is evalu-  penning trap are regarded as strings of variable lefaytt,

ated as consequently, of variable densjityn which the Maxwell-
dE Boltzmann distribution is reached along the direction
pot _ 2 [11,17]. This means that the electron densityr,6,z,t),
$V-gpdr el SRR TETS .
dt 2 dt which is related to the kinetic distribution function
F(r,6,€,t) through Eq.(25), can be written as
€o d dE
=—7—j€¢v¢ nds+ - =, (40)

ep(r,6,z,t)

n(r,0,z,t)=J\f(r,6,t)ex;{ KaT

: (46)
where the Poisson equation and the divergence theorem have

been used. Thus, from E@36), the time derivative of the ) ) o
total energy becomes whereT is the electron temperature aidis a function in-

dependent ok The fluid equation for the-integrated den-

dIEZtOt so sity o(r,6,t), defined as
a9t 2 dt Fﬁ ¢V ¢-ndS (41
Equation(41) has a simple physical meaning. In fact, it U(r’e't):f n(r,6,z,t)dz, (47)

states that the variation of the plasma total energy equals the

power received by the system from the environment: thean be written as in Refl11]:

external energy is necessary for the trap to maintain the elec-

trodes at the fixed potential. As the electric potential is zero o

for the central electrode, the surface integral appearing in Eq. —+V, - (V,0)=0, (48)
L . ot

(41) can be calculated by considering only the region of the

side electrodesat potential—V), and Eq.(41) can be re- whereV, is defined in the following way11]:

written as
dE d
d‘°‘: %d_ v § Vd;-n)ds (42) 1 f exd (e¢)/(kgT)]V, ¢dz
t t Vi=g-&X (49
0
According to the Coulomb law for a conductor surface f exd (e¢)/(kgT)]dz

[22], one can write
Assuming that the energy dependence of zlietegrated

Vé-n= i’ (43) distribution functionF is factorized as
€
where o is the surface charge density of the conductor. In- = Fr.6.0 _ € dz
¢ ! > Cle : F(r,0,e,t) , (50
troducing this expression in E€42), it follows that VkgT kgT vep+e
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the assumptiori46) is recovered and the fluid equatiofhd) 1 e¢
is deduced, from the kinetic model developed here. In fact, Efj (EKBT—G¢)GXD(H>N(K0J)W
within this hypothesis, recalling EQR5), the particle density B

can be written as 1
= ENkBT—ef ¢(r,0,z,t)n(r,6,z,t)dr

F(r,0,t) [ exd —e/(kgT)] =const+ 2k, 4, (54
n(r,0,z,t)= de
VkgT Ved+e with N denoting the(constant number of particles in the

ed(r,0,2,t) trap. Equation54) leads to

=\/;}"(r,0,t)ex%kB—T , (51)

d
g7 (Be = 2lp00 =0 (55)

and by simply imposing the relationywA(r,6,t)
=M, 6,t) between the functiong andN, the assumption
(46) is readily obtained. dE
The fluid equation48) can be deduced from the kinetic “kin _
model by integrating Eq(19) over the energy. In fact, dt
requiring F to have the form expressed in E&Q) and re-
calling the results of the integrdb1) and the relation be- Within the fluid model, in contrast to E¢45). Equation(56)
tweenF and .\, the fluid equatior(48) is obtained. has a simple physical meaning: it indicates that Etf)
It must be pointed out that the assumpti@t) implies ~ describes the plasma as a sequence of thermal equilibrium
that the electrons are distributed as stated by the canonic&lates, fixing the kinetic energy of the plasma parti¢tee

distribution [21] in the phase space.,), for each planar Ed.(52)] and, thus, neglecting its variation. .
position ,6) and, in fact, it is possible to write The second consequence concerns the conservation of the

total energy of the plasmd;,;. As Eq.(24) is not satisfied
within the fluid model, there is no exchange between poten-
m H tial and plasma particle energy, to enable preservation of the
f(r,0,z,v,,t)= m}"(r,@,t)exy{ - ﬁ) (52)  total amount of energy in the system. In particular, from Eq.
B B (54) and considering that Eq40) still holds, one obtains

and, as a consequence, from E8pH), it follows that

(56)

as follows from Eqs(4) and (50). % - % _%o E
In Ref. [11], the energy conservation of the fluid model dt dt 2 dt
was investigated and a conservation law was found in this _ . .
context. The kinetic theory makes it possible to discuss th&ithin the fluid model, unlike Eq(41). S
energy conservation in more detail. As the fluid model is N the particular case in which, during the evolution, it is
obtained having fixed the energy dependence of the distribJfue thatdki,/dt=0 or, equivalently{see Eq.(45)], if the
tion function, the energy of the particles cannot vary in timecondition

self-consistently as prescribed by E@®4). There are two

55 oV $-ndS (57)

main consequences of this fact. The first concerns the kinetic %:8 i § #V $-ndS (58)
energy of the plasma. The ener@ly can be evaluated di- dt Odt
rectly from Eq.(35) by using the assumptio(b0): one ob-
tains holds, then the conservation of the total energy of the plasma
is found within the fluid model, as well. In fact, if E¢G8) is
verified, Eq.(57) reduces to Eq4l) or, in other terms, the
. 1 f f exp[—e/(kBT)]}_( .t)ded fluid model[ sti':\tEes a(cc;rect eneré:ly conservation law.
e = €e———F—— J(I,0,1)dedr In Ref. [11] [Eq. (35), p. 1136, the quantityliess was
‘/kB_T epte introduced as a guess to express the total energy of the
1 ed plasma. In particular, the following conservation property
= _f ex;{—) F(r,0,t) was found[see Ref. 11, Eq41), p. 1136:
VkeT KT
ik dFess 1 dlg, 59
xf SRt edikeD g, (53 dt 2 dt

Of course, Eq(59) cannot express a conservation in the
form of Eq. (41) in a general plasma evolution: this would
The integration ovee can be performed analytically, so that transcend the fluid model. However, if EG8) holds, the
the energyfi, can be written as energy conservation lays9) found in Ref.[11] yields
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in an axially infinite cylinder.
§¢V¢'nd3 (60) Finally, in Refs.[11-13, the plasma length’(r,6,t)

was introduced, in order to express(r,6,t) as
which is a correct energy conservation law for the quantitync(r,6,t)£(r,6,t). In analogy with the fluid model, a
Fets. This means that the enerdy; is a correct guess for plasma length that depends on the axial energy of the par-
the total plasma energy because, in the limiting cases wheréicles is introduced to express the distribution function
also within the fluid model, the plasma evolution is such that=(r, 6, €,t) as
the total energy of the particles is conserved, E5$) re-
duces to the form of the general conservation law #d).

dEeff_ €0 d
dt 2 dt

V. GENERAL PROPERTIES OF THE zINTEGRATED F(r.0.et)=nc(r,6,0)L(r.0,€1) (66)

DISTRIBUTION

There are different ways of expressing the distributionand, using Eq(64), £(r,8,€,t) can be written as
F(r,6,e,t) as a function of more common physical quanti-
ties. First, the functiofr(r, 6, €,t) is tightly related to experi-
mental data. Usually, experiments regarding non-neutral
plasmaq 16] provide thez-integrated distribution of the par- p,(etede,r,o,t)
ticles, o(r,6,t) [defined in Eq.(47)], and the value of the L(r,a,e,t)=\/§f \/m
kinetic energy of the particles;, through the distribution
pk(s,r,6,t). The distribution functiorpx is normalized so
that [ pk(s,r,60,t)ds=1.

The kinetic energy can be expressed as

(67)

VI. EQUILIBRIUM STATES

As can be readily verified, any axially symmetric distri-
s=etedn, (61)  bution function of the formF=F(r,¢), associated with the
potential = ¢(r,z) given by the self-consistent Poisson
where ¢, is the potential of the point where the kinetic equation
energy of the particles is measured and, as a consequence,
the distribution functionF(r, 6,¢,t) can be written directly
from experimental data as
e [ F(r,e)[ep(r,z)+e] 2
o v%ﬂna=;1[ (rofegr el 2 oo
° J[e¢(r,z)+e]‘l/2dz

F(r,0,e,t)=0a(r,0,t)px(etedy,,r,o,t).

Moreover, in analogy with Refs[11-13, where the
plasma densityn.(r,6,t) at the center of the tra€&O0) is
supposed to be known, in the present kinetic model it isrepresents an equilibrium distribution.

possible to fix the distribution functiof(r, #,z,v,,t) at the The stationary states of the plasma have been investigated
center of the trap, in the form by solving numerically the Poisson equatitg8) for differ-
ent choices of the functioF (r,e). Equation(68) is a non-
f(r,0,z=0p,,t)=nc(r,6,t)p,(v,,r,6,t), (63 linear elliptic partial differential equation in two dimensions.

Discretizing the variables, z, and € and using suitable
with p, expressing the-velocity distribution of the particle guadrature formulas to evaluate thende integrals|23], the
in the planar positionr(¢), where [p,(v,.r,6,t)dv,=1.  Ppoisson equatiof68) can be solved numerically by adding
The corresponding distribution functid(r,6,e,t) can be  the termag/at to its left-hand side and seeking the steady

expressed as state of the time-dependent diffusionlike equation obtained.
A time-implicit method has been used to solve the diffusion-
2(e+edpe) like equation. Oncep(r,z) is evaluated, the density of elec-
F(r,0,e,t)=nc(r,0,t)p, —m ot trons in the Penning trap is readily found as

/ 2
X J’ md Z, (64)

F(r,e)leg(r,2)+e]*?
. . n(r,z)=f de (69)
where the potentiatp.(r,6,t) denotes the potential of the —o
trap atz=0 and can be evaluated by solving the Poisson [ed(r.z)+e] " dz
equation
V2¢C:Enc(r,6,t) (65) and also the bounce-averaged drift veloaiy=vp 4, can
€ be evaluated as a function pfande.
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FIG. 1. Equilibrium plasma density and po-

E : 4 tential for a typical Penning trap. The confinin
. P j@j\; yp g trap 9

potential is V=-50V, the central electrode

r (cm)

0 2 4 6 8 10 12 14 16 length L,=26 cm, the end electrode length
z (cm) =4 cm, the gap length =0.5 cm, the wall ra-
o V) dius R,=3.5cm, the plasma temperaturge

=1000 K, and the magnetic fiely=1 T. The
velocity distribution of the electrons is Maxwell-
i ian. The central profile parameters ang=5
X102 m~3, =5, andr,=2 cm.

z (cm)

The equilibrium solutions have been studied having fixedThe electron velocity distribution a&=0 [see Eq.(63)] is
the plasma density at the center of the trafr) in the form  assumed to be Maxwellian, being

[5’12113
r\?] . m
— if r<r - _
rp) } b Po(vz.1)= "\ 2kaTEXp<

r 2
ne(r)= no[l(rp)

0 otherwise,

(70 As expected, Fig. 1 shows that the electron density decreases
where the dimensionless positive paramgtemeasures the sharply approaching the end electrodes, while ztteepen-
degree of hollowness of the profile. Different density profilesdence of the plasma distribution in the grounded central elec-
for different values of the parameter are plotted in Ref. trode is negligible.

[11]. In particular, the density profile used in all the numeri-  The equilibrium solutions have also been computed in the
cal integrations of the present paper corresponds+a®b. case of distributions with the form expressed by a truncated

The equilibrium potential and the equilibrium plasma Maxwellian, that was recently employed by Hilsabeck and
density for a standard Penning trap are represented in Fig. ©'Neil [10]:

2
1+(pu+2)

). (71)

my?
2kgT

0.2
0.1 0.1 r
7,3
0 ‘/\v
o 0 o !
£ i £-01 1
c b c 1
<4 3 | A
-0.1 1 -0.2 B
_I' =
d -0.3 :
oof r=02 (cm) j r=0.7 (cm) . .
-0. i 04 FIG. 2. Plasma density differ-
nce An/n ith r h
0 5 10 15 0 5 10 15 :Ace ”./ 0 V;'.tt .bei.peCt ;0 the
z (em) 2 (cm) axwellian - distribution, for a
Maxwellian distribution truncated
0.05 . . . at the energyS=kgT/2 (dotted,
. S=kgT (dashe§i and S=2kgT
0.1 \
o (solid). The trap parameters are
0 P \ 0 w the same as in Fig. 1.
2 '._\
0.1 1 ° 9
£ 1 £ .
5-02 El! §-0.05 : |l,-!
-0.3
—0.41 113 (cm) 011 1.9 (cm) ;
-05 )
0 5 10 15 0 5 10 15
z (cm) z (cm)
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0y (krad/s)

FIG. 3. Bounce-averaged drift frequeney
105 L L L L L L (in krad/9 for electrons at different axial ener-
' " rem) ’ | gies: €=20.5 eV (solid), €=23.3 eV (dotted,
and e=26 eV (dashed for two different values
of L,. The prediction of the two-dimensional
theory is shown by the thick solid line. The other
trap parameters are the same as in Fig. 1.

o, (krad/s)

[ [ m mo?2 has been pointed out that the model conserves both the an-
mex;{ - m) gular momentum of the plasma and the energy of the system.
B B From the kinetic equation, the fluid model introduced by
. Finn et al. [12,13 and developed by Coppet al. [11] has
/'S ) ¢ L2 gy (7@ been deduced. The distribution functibir,6,e,t) has also
kgT : vaz (r), been related to experimentally measured data through Eq.
(62). Numerical results have been shown concerning the
equilibrium states of the plasma.

Further investigations regarding non-neutral plasma dy-
amics can be performed using the kinetic model presented
ere. In particular, the kinetic equation can be linearized in

order to study the temporal evolution of an initial perturba-

P, (vz,1)=

X | erf

| 0 otherwise,

and the corresponding equilibrium potentials and equilibriu

electron densities, for different values &fhave been com-

pared with the pure Maxwellian case. }
Figure 2 compares the differences in the plasma density,,” X AT

with respect to the Maxwellian case, for different trunca\tedétUdy the Sp?‘“a' and energgtlc dlstr|bu_t|ons of the modes

Maxwellians at different radii. The difference of the plasmaand' through its spectrum, their frequencies and growth rates.

density is more evident at the border of the plasma and dec—)f particular interest is the mode,=1, whose stability

pends onr. It increases as the Maxwellian distribution is : . . . : 7

truncated more and more at low energy: in particular, Fig. 2 * " 15\F\J/J'

reveals that the lack of energetic electrons in the truncatec % 3 \\/_\//j

Maxwellians implies a shorter penetration length of the ARt

plasma into the confining potential wall. %0 48, Y5\ i
Figures 3 and 4 discuss the azimuthal component of the 51

bounce-averaged drift frequeneyp . In particular, Fig. 3 25 st

shows the bounce-averaged drift frequency at different axiak

energies, compared to the predictions of the classic, two 2of 5 ]

dimensional theory for a short and a long Penning trap. Fig-
ure 4 shows the contour plot of the bounce-averaged drift [
frequency versus the radius and the axial energy of the par 14\]
ticles. As was arguefill6,17], the drift velocity strongly de-

pends on the particle energy.

=]
T

sl 4

18\
VIl. CONCLUSIONS 05 1 5 2 25 3 35

r (cm)

In the present work, a noncollisional kinetic model for a
non-neutral plasma in a Penning trap has been developed FiG. 4. Contour plot of the bounce-averaged drift frequengy
describing the evolution of theintegrated distribution func-  (in krad/g for electrons at different axial energies and different
tion F(r,0,e,t). The general properties of the model haveradii, for the case of a typical Penning trap: the trap parameters are
been discussed, in particular the conservation properties. ihe same as in Fig. 1.
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investigation still represents a challenging problem in thecell codes, the importance of the energy dependence for the
physics of non-neutral plasmas. In comparison to fluid modevolution of the vortices in a Penning trap.

els, the linear analysis performed using the present kinetic

model takes into account that particles with different axial

energies have different rotation frequencies, and a spread in ACKNOWLEDGMENT
the axial energies produces a broadening of the unstable
mode’s resonance with the plasma rotati&0]. This work was performed with partial financial support by

The evaluation of the averaged streaming velocities ca®NFM (the Italian National Group of Mathematical
also be suitably used in order to study, through particle-infhysics.
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